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The true temperature exponents of three-phonon scattering processes for silicon in the temperature 
range 51200°K have been calculated. These values have been used to explain the temperature depen- 
dence of phonon thermal conductivity. The theoretically obtained values agree very well with the 
experimental values. The contributions of transverse and longitudinal phonons toward thermal con- 
ductivity of undoped silicon have been investigated, both in high as well as low temperature regions. It 
is observed that the transverse phonons make a major contribution toward phonon thermal conductiv- 
ity in the entire temperature range. 0 1988 Academic Press. Inc. 

Introduction 

The low temperature phonon thermal 
conductivity can be explained well by tak- 
ing into account the scattering of phonons 
by the boundary of the crystals and the de- 
fects present in it. But above the conductiv- 
ity maximum temperature, the decrease of 
phonon conductivity with temperature is 
mainly due to phonon-phonon scattering. 
The phonon conductivity of solids at low 
temperatures has been satisfactorily ex- 
plained by the formulation given by Calla- 
way (I), based on the concept of making no 
distinction between different phonon po- 
larizations. However, to explain the high 
temperature thermal conductivity values, 
distinction between longitudinal and trans- 
verse phonon polarization branches has 
been made by Holland (2) and the model 
was applied to explain the temperature 
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phonon conductivity of germanium and sili- 
con. In the analysis of phonon conductivity 
at high temperatures there is no exact the- 
ory which gives the expressions for the re- 
laxation rates to the three-phonon scatter- 
ing processes, which depend both on 
phonon frequency and temperature. In the 
low temperature range Herring (3) gave the 
relaxation rates for three-phonon scattering 
processes as 

7-i a w2T3 for longitudinal phonons 

and 

7-l a uT4 for transverse phonons. 

In the high temperature region, the three- 
phonon scattering relaxation rate has a T 
dependence, which explains the T-l varia- 
tion of lattice thermal conductivity. 

The three-phonon relaxation rates can be 
written as 
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where 

gh) = OJ for transverse phonons 

= (#)2 for longitudinal phonons 

f(T) = T”. 

The value of exponent m varied between 1 
and 4 for transverse and 1 and 3 for longitu- 
dinal phonons. This situation was modified 
by Klemens (4, 5) by including three- 
phonon Umklapp processes as r;$, a 
g(w)Tme-e’aT, where 8 is the Debye temper- 
ature. Guthrie (6) studied the temperature 
dependence of three-phonon relaxation 
rates, distinguishing three-phonon scatter- 
ing events as (i) Class I events, in which the 
carrier phonon is annihilated by combina- 
tion with the other phonon, and (ii) Class II 
events, in which the carrier phonon is anni- 
hilated by splitting. Guthrie proposed the 
idea that the temperature exponent m is a 
continuous function of temperature, i.e., m 
= m(T). Hence the modified three-phonon 
relaxation rate can be written as T;&, a 
g(w)Tm(r)e-e,‘rrr. Guthrie (6) quoted in his 
paper the expression for the upper and 
lower bounds for m(T). Sharma et al. (7) 
have proposed the model to determine the 
true values of m(T) from the average values 
given by Guthrie (6). By this model (7), the 
exact values of temperature dependence of 
three-phonon relaxation rates for both 
transverse and longitudinal branches, as 
well as Class I and Class II events, can be 
calculated. It has been applied to study the 
conductivity of germanium (7). 

In the present work, we analyze the 
phonon conductivity of silicon by using the 
more realistic three-phonon scattering 
rates. We will use more accurate approxi- 
mation for the value of V,lVfi instead of 
crude approximation of V,lVi = l/V,; it has 
been used by earlier workers. We have 
used an empirical relation q = w/v (1 + pw2) 
to describe the realistic dispersion curve. 

This expression has been used to calculate 
V,lVi in order to have a more realistic ap- 
proach. 

Three-Phonon Relaxation Rates 

The three-phonon scattering relaxation 
rate can be written as 

(1) 
where subscripts I and II represent Class I 
and Class II events. Class I events for 
three-phonon interaction, in which the car- 
rier phonon q combines with q’ into a 
phonon q”, can be represented as 

q + q’ = q” 

q + q’ = q” + b, 
(2) 

where b is the reciprocal lattice vector. The 
process in which b = 0, is called the three- 
phonon normal process, which others are 
Umklapp processes. Class II events in 
which the phonon q splits into q’ and q” are 
represented as 

q = q’ + q” 

q = q’ + q” + b. 
(3) 

The three-phonon scattering events sat- 
isfy energy and momentum conservation 
conditions. The momentum conservation 
conditions for Class I and Class II events 
are given in Eqs. (2) and (3). The energy 
conservation conditions for Class I and 
Class II events are 

0 + w’ = d or uq + u’q’ = d’q” 

(4) 

0=0’+d or uq = u’q’ 
+ uNq”. (5) 

The possible three-phonon processes are 

t+t*L (6) 

t+L*L (7) 

LiLcsL (8) 

t+t*t (9) 
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t+L=t (10) 

L+L*t, (11) 

where “t” represents transverse and “L” 
represents longitudinal phonons. Since the 
longitudinal phonons have the highest 
phase velocity, the energy and momentum 
conservation conditions forbid the pro- 
cesses represented in Eqs. (8) to (11) and 
the only allowed three-phonon processes 
are given (8-10) by Eqs. (6) and (7). In 
Class I events both longitudinal and trans- 
verse phonons can participate, as given by 

t+t+L 
(12) 

t+L-tL. 

In Class II events only longitudinal 
phonons can take part as given by 

L-t-i-t 

L*t+L. 
(13) 

The three-phonon relaxation rates for 
transverse and longitudinal phonons can be 
written as 

and 

(~F$L = BL102TmLI(T)e-o'aT 

+ BLI102pm(Q-~~~T 9 (15) 

where &I, BLI, and ~~~~ are the three- 
phonon scattering parameters for trans- 
verse Class I events and longitudinal Class 
I and Class II events, respectively; mtl(t), 
m~i(T), and m&T) are the corresponding 
m values. 

The upper and lower bounds of m(T) for 
Class I and Class II events can be calcu- 
lated and the average value of m(T) is 
mwm = (mm, + m&/2- But m,,(T) is not 
the true value of m(T) in the entire tempera- 
ture range. The true value of m(T) can be 
written by phenomenological consider- 
ations using the SDV model (7) as PC*) = 
TmaJT) (1 + NaT). Hence 

49 = mw(T) + 
In(l + &T) 

,n T . (16) 

At high temperatures T % 8; m(T) = m,,(T) 
= 1, while at low temperatures T << 8, m(T) 
# m,,(T). Using Eq. (16), true values of 
m(T) can be ascertained for both longitudi- 
nal and transverse branches from the val- 
ues of m,,(T) given by Guthrie (6). The av- 
erage values of m(T) obtained by taking the 
average of lower and upper bonds for m(T) 
are given for Class I and Class II even as 

ma”1 = x,,,(exm= - l)-’ + o.5x,,x 

ma”11 = 0.5xmax(eQm - I)-’ + 0.5, 

where 

X max = ho,y,,axlk~ T. 

The true values of m(T) are given as 

Q(T) = xmaxt(@m=t - I)-’ + 0.5~~~~~ 
+ ln(1 + BhT) 

In T (17) 

rn~~(T) = xm,,L(eXmd- - I)-’ + 0.5~~~~~ 
+ ln(l + 8hT) 

In T (18) 

mLII = xmaxLeo%mL(f?maxJ- - 1))’ + 0.5 
+ ln(l + 8/aT) 

In T 7 cl91 

where xrnax~ = fi~,,,Llk~T, xmaXt = flw,,,J 
k*T, and W,,L and umaxt are zone boundary 
frequencies for longitudinal and transverse 
phonon branches. Using the values of 
m&T), mdT), and m~dT) in Eqs. (14) and 
(15), the exact three-phonon relaxation 
rates for longitudinal and transverse 
phonon branches can be determined. 

Lattice Thermal Conductivity 

In the calculation of phonon conductiv- 
ity, the phonon velocity given by acoustic 
approximation, w = qV, is not realistic pro- 
vided the dispersion effects of different po- 
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larizations are taken into consideration. 
The acoustic approximation is modified as 

q = ; (1 + pw2), (20) 

where /3 is the parameter given by 

p = $ (C-’ 
0 * 

The value of V,lVi becomes 

(V /V2) = _I_ . (1 + Po2)2 
g P VP (1 + 3@)’ (21) 

where V, is the phonon group velocity (dwl 
dq) and VP is the phase velocity w/q. Using 
the value of V,lVi in the expressions for 
thermal conductivity due to longitudinal 
and transverse phonon branches (2), we get 

(1 + P1w2)2 x4exdx 
(1 + 3&J) (7;‘)@ - 1)2 + wtII)w,<o<w2 

lx4e*dx 
(1 + 3&W2) (7;‘)@ - 1)2 1 (22) 

(1 + p&)2 1 x4exdx .- 
(1 + 3p#J9 (T,‘)L (e’ - 1)2 + (VLIILJ~<OGI~ 

I WT (1 + P46J2)2 1 x4exdx 
8dT (1 -i- 3p402) (7;')~ (e" - l)2 1 . (23) 

The total phonon thermal conductivity 
can be expressed as 

K = Kt + KL. 

wI and w2 are the phonon frequencies corre- 
sponding to the wave vectors (qmax/2) and 
qmax for transverse phonons, and 0~4 and 0~3 
for that of longitudinal phonons. These val- 
ues are calculated from the phonon veloci- 
ties in the frequency regions 0 < o < WI and 
w1 < 0 < w2, respectively, for transverse 
phonons. VLI and VLII are the velocities for 

longitudinal phonons in the frequency re- 
gions 0 < w < w4 and w4 < o < 03, respec- 
tively. (7;r)t and (r;‘)~, the combined relax- 
ation rates for transverse and longitudinal 
phonons, are given as 

(T;‘)~ = TB’ + T,~! + BtIfdTmtI(Tke~aT 

(T;‘)~ = ~jj’ + T$ + BLI~2TmLI(T)e-e~aT 
+ BLII,2TmLII(T)e-e’aT. 

Here &, &I, and BLu are the three-phonon 
scattering parameters for transverse Class I 
events and longitudinal Class I and Class II 
events, respectively. 7;’ is the relaxation 
rate for boundary scattering of phonons and 
rpt’ is the relaxation rate for phonon-point 
defect scattering. 

Results and Discussion 

It is observed from our calculations that 
the contribution of transverse phonons 
dominates over the longitudinal phonon 
contribution toward lattice thermal conduc- 
tivity. The ratio of Kt : KL at low tempera- 
tures is approximately 6 : 1. At low temper- 
atures, the boundary scattering of phonons 
dominates over other scattering processes. 
Since the longitudinal phonon velocity is 
considerably higher than the transverse 
phonon velocity, therefore, the thermal 
conductivity due to longitudinal phonons 
KL is less than the conductivity due to 
transverse phonons, K,, as the phonon ve- 
locity term appears in the denominator of 
conductivity expression. Further, as there 
exist two transverse polarized phonon 
modes corresponding to each longitudinal 
phonon mode, the larger thermal conduc- 
tion is due to transverse phonons rather 
than to longitudinal ones. This results is 
also supported by other work (II). 

The total thermal conductivity, K, is due 
to the acoustic and optic phonons. How- 
ever, in silicon, the optic phonons have 
much smaller group velocities than the 
acoustic phonons. Since K varies as the 
square of the group velocity, we totally ig- 
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TABLE I 

AVERAGE, MAXIMUM, AND TRUE VALUES OF m(T) 
USED IN THE CALCULATION OF THE PHONON 

THERMAL CONDUCTIVITY OF SILICON 

TraIlSVerSe 
Longitudinal phonons phonons 

Class 1 Class II Class 1 

T 

(“K) mmar ma” mrw Flmx ma” mrw mmax mhv mfrue 

loo - - - 2.00 0.50 1.8 3.50 1.60 3.80 
150 4.00 2.20 2.80 2.00 0.55 0.75 1.90 1.35 1.90 

200 2.90 2.30 1.80 2.00 0.58 0.75 1.30 1.35 1.80 
250 2.50 1.90 1.70 2.00 0.59 0.76 1.20 1.34 1.65 
300 1.80 1.30 1.50 2.00 0.60 0.76 I.20 1.30 1.40 
400 1.75 1.25 1.45 2.00 0.63 0.77 1.15 1.26 1.38 
So0 1.60 1.20 1.40 2.00 0.65 0.77 1.15 1.20 1.35 
700 1.50 1.10 1.35 2.00 0.68 0.78 1.10 1.15 1.30 
900 1.30 1.00 1.20 2.00 0.70 0.78 1.10 1.10 1.25 

looo 1.25 1.00 1.10 2.00 0.72 0.78 1.10 1.10 I.20 
1200 1.20 I.00 1.00 2.00 0.75 0.78 1.10 1.10 1.20 

nore the optic phonons as thermal energy 
carriers. The optic phonons influence ther- 
mal conduction in two ways: (a) they en- 
hance conductivity by transporting heat 
and (b) they reduce the conductivity by in- 
teracting with the acoustic phonons. It was 
concluded (12) that the net effect of optic 
phonons on lattice conductivity will be neg- 
ligibly small. Therefore, the acoustic mode 
will be the dominant mode for heat conduc- 
tion. The lattice thermal conductivity of sil- 
icon has been described by Joshi and 
Verma (13). Singh and Verma (14) studied 
the influence of internal stress in germa- 
nium and silicon at low temperatures. 

The equations 7-i 0: w2T3 and 7-l 0: oT4 
are valid at low temperatures for longitudi- 
nal and transverse phonons, respectively. 
At high temperatures it would lead to T de- 
pendence but relaxation rates would remain 
w2 and w dependent for longitudinal and 
transverse phonons, respectively, in entire 
temperature regions. This was shown by 
Herring earlier. Klemens had modified this 
X3 T;;‘, a g(o)Tme-e’aT. 

He has taken the temperature exponent, 
m as 1 and 3 in the low and high tempera- 
ture regions, respectively. Our main con- 

cern is about the temperature exponent m 
and its temperature dependence. It should 
be a continuous function of temperature; 
i.e., m = m(T). In the present work, we 
have given a method to calculate this expo- 
nent m as a function of temperature and, 
therefore, our equations are the most realis- 
tic equations in the entire temperature re- 
gion for the calculation of three-phonon re- 
laxation rates. 

The average, maximum, and true values 
of m(T) for both longitudinal and transverse 
phonons for Class I and Class II events, 
used in performing the present calculations, 
are displayed in Table I. mmax is the maxi- 
mum value obtained by Guthrie (6), mav is 
the mean value of upper and lower bounds, 
and mtrue (T) is the value of the exponent 
used in our calculations. Table II shows the 
theoretically computed values of the longi- 
tudinal, transverse and the total phonon 
conductivity and their comparison with the 
experimental value in the temperature 
range 5-1200°K. It is observed that the the- 
oretically computed values agree very well 
with the experimental values. The values of 
other parameters used in making these cal- 
culations are shown in Table III. 

TABLE II 

THEORETICAL VALUES (Ktheo = Kt + KL) OF THE 

PHONON CONDUCTIVITY OF SILICON COMPARED 
WITH EXPERIMENTAL VALUES (Kexp) IN THE 

TEMPERATURE RANGE 5- 1200°K 

5 3.2 2.7 0.5 
10 12.2 10.2 2.0 
20 24.1 17.1 7.0 
40 40.2 25.0 12.0 
80 19.4 16.2 3.1 

:: 
13.6 12.2 1.3 
4.1 4.1 - 

300 2.2 2.2 - 
4ocl 1.8 1.7 - 
600 0.7 0.7 - 

loo0 0.35 0.38 - 
1200 0.3 0.3 - 

No&. K1 and KL are the contributions of transverse and 
longitudinal phonons, respectively. 
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TABLE III 

PARAMETERS USED IN THE CALCULATIONS 
OF THERMAI. CONDUCTIVITY OF Si IN THE 

TEMPERATURE RANGE 5-1200 K 

done under NSWC Contract N60921-86-C-A226, Sub- 
contract No. 86-206. 
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